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Modeling Challenges: Chemistry

Tricalcium Silicate (idealized)

Dissolution
Ca;SiO; + 3 H,0 — 3 Ca?* + H,Si0,% + 4 OH-

Growth of C-S-H
x Ca’* + H,Si0,% + 2(x-1) OH-— Ca0,-SiO0,—H,0

Growth of Portlandite
Ca?* + 2 OH- — Ca(OH),

Value of x depends on local pore solution chemistry
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Modeling Challenges: Chemistry

Tricalcium Aluminate (idealized)

Net Reactions Without Gypsum or CH
2CA+27H— C,AH; + C/AH,y — C;AH,
C,A+6H—=C;AH; (>30 °C)

Net Reactions With CH
C,AA+CH+12H — C,AH,,

Net Reactions With Gypsum (> 2-3%)
C,A+3CSH, +26 H— C,AS;H,,  (initial)
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Modeling Challenges: Structure

Micro-scale

—

Kinetic Implications

e Nucleation sites

e C-S-H growth = diffusion barrier
o Water availability

Property Implications

e Porosity forms 3-D percolating network

e Solids may begin as percolating (or not) “soft”
clusters; later form stiff percolating network
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Modeling Challenges: Structure
Nano-scale
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Modeling Challenges: Structure

Nano-scale

Micrographs courtesy of 1.G. Richardson,
University of Leeds

C,S Paste, 80°C, 8 d
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Some Available Models

CEMHYD3D (NIST)

e Digital image basis
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Some Available Models

LEMHYD3D (NIST)

e Digital image basis

e Accurate microstructure representation

e Rule-based to mimic reaction and diffusion
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EMHYD3D

Cellular automaton approach
- Each volume element is an independent agent that can

e Dissolve

e Diffuse -

e React
A 4
A
[]

A Pore solution

>

I_1

' Stepwise random walk on lattice

I__+

Collisions between agents,

governed by reaction “rules”
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Some Available Models

LEMHYD3D (NIST)

e Digital image basis

e Accurate microstructure representation

e Rule-based to mimic reaction and diffusion
e Little or no kinetic information

e Magic resolution of 1 pm

e Primarily interpolative
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Some Available Models

1YMOSTRUC (TU Delft); IPK (EPFL)

e Continuum basis
e Chemically homogenized particles

* Hydration modeled as growth of
interparticle contacts

 Phenomenological kinetic equations (e.g.
Johnson-Avrami-Mehl)

e Not easily extensible
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New Model: HydratiCA

e Discretize on regular grid

e Retain power of CEMHYD3D microstructure
representation

e Stochastic methods for diffusion and
reaction

e Algorithms are mechanistically based, and
converge to standard PDE rate equations

e Scalable and extensible
e Applies to general aqueous mineral systems
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Mesh Class

Dimensions, resolution, clock, phase stats,
thermal condition, moisture conditions,
databases

Node Class '

neighbors, volume, materials,
methods for transport and rx

Derived Material Classes P i

(Liquid, Solid, Gel, Crystal, Solute) S Material Database Class

Methods for material-specific behavior

encoded here Reaction Database Class

> ID, reactants, products, molar
Base Material Class Q stoichiometric coefficients,
reaction enthalpy, activation

ID, composition, p, @, C,, porosity, enthalpy, equilibrium constant
mobility, virtual methods for material-specific behavior y baseline rate constant

Ion Database Class

ID, mol wt, radius, intrinsic diffusivity, charge
(immutable)
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ydratiCA: Modeling Aqueous Diffusion
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ydratiCA: Modeling Aqueous Diffusion

e Based on a random walker algorithm

 Each computational node contains a
number of “cells” of solute and water

* In any time step, each cell can execute a
single step in a random direction

e Probability of stepping is proportional to
the solute mobility and the time increment

D = D At/)\2
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Non-steady state diffusion of neutral solute

15 mM 5 mM

_______

""""

* C(x,y,2,0) =0
e CO,y,z,t) =15 mM
e C(100,y,z,t) =5 mM
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Non-steady state diffusion of neutral solute
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ydratiCA: lonic Diffusion

e Effective mobility of a charged species is
influenced by long-range Coulombic
interactions with other charged species

e Local charge neutrality is required, even
though different ions have different
intrinsic diffusion coefficients

e HydratiCA can estimate the electrostatic
potential at each time step, and include it
in the electrochemical potential

e Results in biased random walk
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Coupled diffusion of ions
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ydratiCA: Modeling Chemical Reactions
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ydratiCA: Modeling Chemical Reactions

aA+bB LCC

e Reaction events are localized within a node

e List of available reactants is generated and
compared against reaction database

e List of possible reactions is built
e Reaction randomly selected from list

e Unit reaction is executed (n cells of A and
m cells of B are removed, p cells of C are
added) on a probabilistic basis

e Probability proportional to rate constant k
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ydratiCA: Modeling Equilibrium

aA+bB —kch

/ cC ﬁaA+bB
AW

(o I dCy e
=k A (B) =k {C)

At equilibrium: £ {C}* =k, {A}*{B}’

T (5 S
K, {AY{BY
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dratiCA: Modeling Reactions

Periodic

e 10 x 10 x 10 nodes

. e Node spacing A= 3 ym
Solution T =298 K

Periodic

k
Ca(OH), <—__I§> Ca2* + 20H-

Ca(OH)Z ke 2.17)210'7moles/m2/s
k. = 3.

29x10-3 moles/m2/s

Periodic
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ydratiCA: Chemical Equilibrium
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ydratiCA: Temperature Effects

ky(T) = ki (298) exp | | DK A

B
(T) = £, (298) exp [ 3] or EE

ACBM Technical Review, March 2006



ydratiCA: Temperature Effects
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ydratiCA: Nucleation

. Simlilar to nucleation of solid from a supercooled
melt

e Literature review: D. Kaschiev and G.M. van

Rosmalen, Cryst. Res. Technol. 38 [7-8] 555-574
(2003).

I{z,t) = ASexp [_Hﬁl

kT
where
)
4?1" 173 T 142 - 1t —J-'".
4= (i) )Pl
3 kT A ° °
<  For spherical nuclei
W o 167’
3T In 8)? J
S = saturation index o= surface energy
D= diffusion coeflicient iy = molecular volume of solid
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ydratiCA: Modeling Nucleation

Periodic

e 10 x 10 x 10 nodes

. e Node spacing A= 3 ym
Solution T =298 K

Periodic

k
Ca(OH), <—__I§> Ca2* + 20H-

Inert k r

2.17x107 moles/m2/s
3.29x103 moles/m?/s

Periodic
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ydratiCA: Nucleation

80 . ' | ' | ' | T | .
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27
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nucleation work
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ydratiCA: Modeling Hydration of C,S
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ydratiCA: Hydration of C,S

* Requires assumptions about chemical reactions and
mechanisms

e Alternative theories can, in principle, be tested by
HydratiCA

e First theory tested: Garrault and Nonat, Langmuir 17,
8131-8138 (2001).

e Coupled reactions:

Ca,8i0; + 3H,0 — 3Ca?" + 40H + H,Si0%"
C/S Ca®™ +2(C/S—1)OH™ + H,0 — CaOg;s-5i0:-Hz0
Ca’t + 20H- — Ca(OH),

« Nucleation of C-S-H occurs on surface of C,S

e Growth of C-S-H is “autocatalytic” due to increased area of C-S-H
surfaces for growth.
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ydratiCA: Hydration of C,S

Periodic

e 25 x 25 x 25 nodes
e Node spacing A= 4 ym
e T =298 K

Periodic

w/c =0.3125
4 m?/kg

Periodic
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ydratiCA: Hydration of C,S

| For this original choice of
parameters, the silicate
concentration reaches a local
maximum at about 6 minutes.
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ydratiCA: Hydration of C,S

0T T T

pH increases rapidly over
first few minutes, then
12.0[ = more slowly with
increasing time as the
rates of consumption and
production of OH" are
comparable.
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ydratiCA: Hydratlon of C,S

Control Variables:

® ki =1.0x 10% mole/s

e Nuc rate coefficient = 10° s
e CSH transport factor = 0.3 P
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ydratiCA: Hydration of C,S

1 The kinetic behavior depends
on three main parameters:

1. C;S dissolution rate const.
2. C-S-H nucleation work

a) Homogeneous

b) Heterogeneous
3. C-S-H growth rate constant
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